

In-flight OPS-SAT images processing by Al

Agenda.

Experiment context

OPS-SAT use case

Deployment workflow on SoC

In flight inferences results

Conclusion and perspectives

Image Cloud Coverage Estimation 52.1%

03/06/2021

About us.

Project team "Autonomous and Reactive Imagery Chain" (CIAR) from French Institute Research & Technology Saint-Exupéry

OPS-SAT use case.

Goal:

- RGB Cloud Segmentation in real time
- with "tiny" ANNs on Cyclone V SoC FPGA

Two firsts in Europe:

- Deep learning on-board processing of an image on FPGA
- Remote updating, from an ESA ground station, of an ANN on board the OPS-SAT satellite

Full Resolution OPS-SAT Image 2044*1932pix

image credit: ESA

Onboard Segmentation Map 73*69pix From the FPGA

OPS-SAT images caracteristics

OPS-SAT IMS-100 Camera

- Based on ST200 star tracker
- Radiation tolerance up to 12.5 kRad
- Size 30 x 33.5 x 41.4 mm³
- Mass 48.8g, power 650 mW
- Bayer sensor with pixel size : 2,2µm
- Focal length 25mm, Diagonal FOV : 21°

OPS-SAT image

- Size 2048 x 1944 x 8bits/pixel
- Ground sampling : 53m @altitude 600km
- Raw radiometry :
 - Saturations for high radiometric level areas
 - Poor SNR on scenes at low Sun elevation angle
 - Sensor defects not corrected (dust on optics)
- No radiometric correction applied

FRENCH INSTITUTES OF TECHNOLOGY

On Board image

Image credits ESA

Corrected

on ground

OPS-SAT images dataset

• Training data : 19 training images from the first OPS-SAT acquisition campaign on August 2020

Test data : 23 test images from theOPS-SAT acquisition campaign on March 2021

ра

ge 6

Image credits ESA

OPS-SAT image labelling

Semi manual labelling by an image processing expert :

- Binary cloud mask cloud/no_cloud labelling at pixel level to produce ground truths for training and performance metrics assessment
- Automatic 28x28 patching and patches annotation wrt. cloud coverage from 0% to 100% by step of 10% used for classification algorithms training (CNN, SNN)

Image credits ESA

Examples of cloud coverage patch labelling

 Patching 28x28
 Image: Constraint of the second secon

Labelling rules

- Drop shadows over clouds are considered as cloud
- Transparent clouds (cirrus, haze) showing visible ground features are annotated as no cloud
 - Snowy and ice are annotated as no cloud

OPS-SAT « tiny » Neural Networks.

Formal Neural Network CNN

- LeNet-5 architecture: C5.3.1,R,P2,C5.5.1,R,P2,D10 ,R,D2,SM
- 1440 parameters
- Classification of 28*28 patchs (5037 patches in full 2048*1944 image)

« Best paper » of conference On Board Payload Data Compression (OBPDC 2020)

Full Spiking Neural Network

- LeNet-like architecture without pooling : C6.3.1,R,C6.3.1,R,D10,R,D2 ,SM
- 2666 parameters
- Classification of 28*28 patchs (5037 patches in full 2048*1944 image)
- PhD thesis at university of Cote d'Azur (December 2020)

Full convolutional Neural Network FCN

- "Tiny" semantic segmentation*: C3.5.1,R,P2,C5.5.1,R,P2, C1.1.1,SG
- 644 parameters (No Fully Connected)
- Output of the 28*28 patch inference is a 4*4 features map
- Publication selected at International Conference on Computer Vision (ICCV 2019)

INSTITUTES OF TECHNOLOGY

0

03/06/2021

Zoom on Spiking Neural Networks.

Spiking neurons model:

- Inspired from the event-driven paradigm of biological brain
- \circ Information is processed in the spiking domain
- Integrate & Fire (IF) neuron model*
 - weighted spikes counted in an accumulator => replace MUL-ACC of formal ANN
 - output spike triggered when threshold raised => replace activation function

* Refer to "Design space exploration of hardware spiking neurons for embedded artificial intelligence" in Elsevier Neural Networks, January 2020

The Zoetrope Genetic Programming (ZGP) algorithm

Principle

- Evolutionary algorithm ٠
- Individuals = mathematical expressions combining input variables and constants
- Evolve through generations via genetic ٠ operators (mutation and crossover)
- Survival of the "fittest" individuals with regard to • the input data

Advantages:

- Frugality in terms of training data ٠
- Low computational time
- Avoids overgrown and complex models ٠
- Interpretability of models
- Easy deployment and portability on embedded systems

FRENCH

03/06/2021

A. Boisbunon et al. Zoetrope genetic programming for regression. In 2021 INSTITUTES OF TECHNOLOGY Genetic and Evolutionary Computation Conference(GECCO'21), 2021

Figure: General evolutionary algorithm process

Two strategies :

- ZGP alone: trained on a subset of pixels from each image from the training set (10000 pixels in total).
- FCN+ZGP: ZGP trained on the segmentation maps resulting from a FCN

ANNs deployment on FPGA.

HW target:

MitySOM- -5CSx combines : ✓ dual hard-core Cortex-A9 ✓ 110K Logical Elements ✓ one Cyclone V System on Chip ✓ 2GB of DDR3 CPU/FPGA RAM ✓ 512MB of DDR3 FPGA RAM

✓ 48MB of QSPI NOR Flash

Workflow:

- ANN train & test 1.
- Weight/biais conversion 2.
- 3. HDL code generation with VGT
- Code modification 4.
- 5. RTL simulation & verification
 - If an error occurs, return to step 4
- **Design intégration & test** 6.
- 7. Implementation

ANNs deployment on FPGA.

Design constraints:

HPS

- Pipelined inferences
- Cyclone-V FPGA capabilities

- Pre/post-processing on core A9
- Scheduler controlled by software to program the DMA
- DMA to move data from/to DDR
- > « CNN » main IP to run image inference
- Communication : Avalon / AXI4 /AXI stream

Final state machine manages the AXI stream IF

- Pixel manager which performs pixel re-organisation
- Layers interconnection with enabling signals
- Final layer stores results into FIFO

ANNs deployment on FPGA.

Inférence consumption < 1,8 W (Quartus estimator)

ANN architecture	FCN 8.11	CNN 8.9	SNN 8.8
Number of parameters	644	1440	2666
Logic cells occupation %	92%	69%	31%
Zeroded W&B by quantification	0/614	809 / 1440	15 / 2666
Clock frequency (MHz)	100	100	100
Latency per 28x28 patch (µs) \downarrow	24.99	24.84	312.0
Power estimation (mW)	1750	1599	1062

pa ge 13

> fit FRENCH INSTITUTES OF TECHNOLOGY

Preliminary results: Upload process.

In-flight results.

Throughput:

Full OPS-SAT image (2048x1944) < 156ms (>25Mp/s)

Al algorithm	Hardware	FPGA time (ms)	Total time (ms)		
CNN 8.9	FPGA + CPU	155	4 370		
FCN 8.11	FPGA + CPU	156	12 106		
ZGP	CPU	NA	32 411		

Power consumption:

ANN architecture		FPC		
	(**)	Average	Estimation	(**)
CNN 8.9	2,41 ± 0,11	1,68 ± 0.09	1,59	$4,09 \pm 0,17$
FCN +ZGP	$2,61 \pm 0,08$	1,61 ± 0,05	1,75	$4,22 \pm 0,08$

03/06/2021

pa ge 15

In-flight results.

Inferences metrics:

CNN degraded by zeroed weights and biases with good precision SNN with potential overfitting then impacted by spikes encoding FCN is clearly the best ANN with Fscore over 70% ZGP provides homogenous results with very good generalization

Metrics	Trains	set in Float	t32 (α)	Testset in Float32 (β)				Testset on FPGA/Cyclone V (σ)							
ANN (arithmetic)	Fscore	Precision	Recall	Fscore	(β-α)	Precision	(β-α)	Recall	(β-α)	Fscore	(σ-β)	Precision	(σ-β)	Recall	(σ-β)
CNN (8.9)	58	74	47	56	<mark>∕</mark> -2	70	-4	46	<u>∕</u> -1	50	- 6	76	6	37	-9
CNN/SNN* (8.8)	62	79	51	53	-9	69	-10	44	-7	67	14	62	- 7	72	28
FCN (8.11)	62	81	51	72	10	75	- 6	70	19	72	0 🔨	75	0 🔨	69	∑ -1
ZGP (FP32)	60	62	58	63	1 3	65	1 3	62	4	63	0 🔨	65	0 🔨	62	0 🔨

*SNN results on ground cause not yet not uploaded

р а

6

Conclusion and perspectives.

Successful demonstration of on-board image processing by AI on FPGA:

- High througput (25Mpixels/s)
- Low consumption (>2mW)

OPS-SAT limitations:

Clouds detection in RGB
 Images quality without correction
 Limited and unbalanced train dataset
 FPGA number of logical elements
 Quantification losses

New opportunities:

- To download only the useful information to end users
- To alert in near real time from space
- To change the mission by uploading new ANN codes

Metrics improvements:

- Images correction before inference
 Improved training dataset
 Additional layers/filters on SNN
 Custom optimized CNN
- ➢Optimised quantifying method
- ➤ZGP training on more pixels

Thank you for your attention

ON BOARD REAL TIME INFERENCE

Image Cloud Coverage Estimation 52.1%

Any question please?

03/06/2021