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Abstract 

Detecting anomalies in satellite telemetry data is pivotal in ensuring its safe operations. Although there exist 

various data-driven techniques for determining abnormal parts of the signal, they are virtually never validated over 

real telemetries. Analyzing such data is challenging due to its intrinsic characteristics, as telemetry may be noisy and 

affected by incorrect acquisition, e.g., rendering missing parts of the signal. Although there exist data-driven 

algorithms for detecting abnormal events, spanning across classic techniques exploiting expert systems, unsupervised 

approaches and deep learning models, they are virtually never validated on real-life telemetry data. Also, they often 

require long time-series data to build a model that reflects the nominal operation of the satellite – capturing it on 

board is tedious and time-consuming, thus data-level digital twins have been blooming to simulate the correct 

telemetry. Benchmark datasets commonly exploited to validate detection algorithms contain time-series data, where 

each time series is split into its training and test parts, presenting similar characteristics. Such data is not affected by 

the practical challenges commonly observed in on-board telemetry, such as data noisiness or missing data, due to 

e.g., inappropriate signal acquisition. Therefore, the estimated anomaly detection capabilities of data-driven 

techniques may easily become over-optimistic, and the experimental scenarios are often flawed by methodological 

issues in the field. In this paper, we present our approach toward building a supervised machine learning model for 

detecting anomalies in real-life OPS-SAT telemetry data. We will discuss our procedure for building a labeled 

dataset of telemetry examples from a large dataset of unlabeled telemetry, and will present the importance of 

following a rigorous procedure for this task, as the quality of the ground-truth annotations (elaborated by a data 

scientist, with and without the label validation performed by the OPS-SAT Operations Team) affects not only the 

training process, but also the final validation of the machine learning model. We will thoroughly discuss our 

quantitative and qualitative experimental analysis that allowed us to objectively quantify the detection capabilities of 

the models, benefiting from hand-crafted feature extractors and classical supervised learners, even for (extremely 

limited) ground truth data. Finally, we will discuss the approach that we followed to prepare a resulting machine 

learning model for deploying it on-board OPS-SAT. 
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1. Introduction 

Detecting irregularities within the telemetry data 

collected from satellites is a critical step in ensuring 

their safe operation and facilitating rapid response to 

various malfunctions and threats [1–5, 9, 12]. Generally, 

three primary types of anomalies need consideration in 

complex missions: 

• Point Anomalies: These occur when telemetry 

values fall outside the expected operational 

range. 

• Collective Anomalies: These involve 

sequences of consecutive telemetry values that 

collectively exhibit anomalies, with a single 

data point not necessarily considered an 

anomaly. 

• Contextual Anomalies: Single telemetry 

values exhibit anomalies within their local 

context. 

Creating detection systems for such unexpected 

events demands substantial expert knowledge to define 

the typical ranges for specific telemetry channels. These 

systems are often custom-designed for a particular 

mission and may not readily apply to future spacecraft. 

To automate the telemetry data anomaly detection 

process, several research avenues have been explored in 

the literature. "Out-of-limit" detection engines verify if 

actual telemetry values fall within predefined ranges 

and are effective in identifying point anomalies. Expert 

systems have also been proposed for handling other 

types of events [5]. While machine learning algorithms 
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have been developed for telemetry data anomaly 

detection (covering both supervised and unsupervised 

techniques [6–9]), they tend to be highly parameterized, 

and improperly tuned hyperparameters can significantly 

impact their performance ([10, 11]). 

In recent years, deep learning has achieved 

remarkable success in various scientific and industrial 

domains, including the detection of anomalies in 

sequential data. Artificial neural networks known as 

recurrent neural networks have shown promise in 

forward prediction based on time series inputs. RNN 

architectures based on Long Short-Term Memory or 

Gated Recurrent Unit modules are particularly well-

suited for this purpose due to their feedback connections 

and temporal learning capabilities, which enable them to 

refine predicted signals and compare them with actual 

telemetry data. By analyzing the differences between 

these signals, we can identify anomalous events. 

In this paper, we focus on leveraging recent 

advances in the field and employ machine learning 

anomaly detection techniques to detect anomalies in real 

OPS-SAT telemetry signals. Applying such data-driven 

approaches to real-world data poses, however, several 

important challenges, with the most important one 

concerned with the availability of the ground-truth data 

(i.e., telemetry signals accompanied with the ground-

truth information about the corresponding anomalous 

events). Here, we present our approach toward 

developing a dataset – in cooperation with the OPS-

SAT Operations team – that could be used not only to 

build machine learning models for detecting anomalous 

events from telemetry data, but also for thoroughly 

verifying such techniques over real-world data. 

The remainder of this paper is structured as follows. 

In Section 2, we present our approach toward anomaly 

detection in the satellite telemetry data, and discuss our 

dataset, which is used to experimentally verify the 

operational capabilities of the presented approach. Then, 

in Section 3, we elaborate on the obtained experimental 

results. Finally, Section 4 concludes the paper and 

shows the research directions that could emerge from 

the research presented in this paper. 

Fig. 1. A high-level flowchart showing how a machine learning model for anomaly detection from satellite 

telemetry could be deployed for the real-world data. 
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2. Materials and methods  

In this section, we discuss our real-world dataset that 

was used to build and verify the machine learning 

algorithms for detecting anomalous events in the OPS-

SAT telemetry (Section 2.1). In Section 2.2, we discuss 

the supervised learners utilized for this task. 

 

2.1 Building OPS-SAT telemetry dataset for anomaly 

detection  

In this research, we leverage a dataset of telemetry 

signals derived from real-life OPS-SAT telemetry data. 

The selection of signals for this investigation was 

guided by input from OPS-SAT operators, who 

highlighted telemetry parameters of practical 

importance. Consequently, we considered several 

telemetry readings from the magnetometer and the PD 

channels. The resulting dataset initially contained 524 

identified anomalies. However, after a careful dataset 

review, we retained 445 anomalies of various types. To 

annotate and analyze the telemetry signal data, we 

employed the KP Labs’ OXI tool for telemetry analysis, 

which can be accessed at https://oxi.kplabs.pl/ [12]. 

An initial examination of the downloaded telemetry 

signals unveiled certain challenges that informed our 

choice of the target algorithm for implementation. These 

challenges included data gaps, discontinuities within the 

signal, abnormal signal patterns (which are not 

necessarily anomalous events that should be detected by 

the automated anomaly detection algorithm), significant 

changes in signal characteristics (which may be 

considered a “concept drift”), noisy sections of specific 

telemetry channels, periodic signals, and segments 

devoid of apparent periodicity. An example illustrating 

noisy and fragmented telemetry is provided in Fig. 2. In 

light of these real-world complexities, our dataset was 

meticulously curated by a committee comprising OPS-

SAT operators and specialists in machine learning and 

data analysis. The final dataset was derived from the 

periodic segments of telemetry data spanning several 

months and encompassing various channels. These 

periodic signals were subsequently divided into 

segments, each of which was labeled as either 

anomalous or non-anomalous. The rationale behind this 

segmentation approach is elucidated in Fig. 3, which 

illustrates a real OPS-SAT periodic telemetry fragment 

divided into short segments, with each segment color-

coded to enhance visualization. 

In our analysis, we manually selected a total of 2134 

segments from the identified periodic signal parts 

spanning from January 1, 2022, to August 1, 2022. 

These segments were sourced from various channels, 

and during our examination, we identified 524 

anomalies. A detailed breakdown of this dataset is 

presented in Table 1, while non-anomalous telemetry 

segments are exemplified in Fig. 4, and identified 

anomalies are showcased in Fig. 5. 

 

Fig. 2. Example of a telemetry signal with hours-long readout gaps. 

Fig. 3. The idea of telemetry segments (annotated with different colors). 
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Table 1. The preliminary training and validation sets 

(the number of anomalous and nominal segments) for 

anomalous and non-anomalous telemetry signals. 

 Training Validation Total 

Anomalies   396 128   524 

Nominal 1205 405 1610 

Total 1601 533 2134 

 

Subsequently, we consulted with the OPS-SAT 

Operations team and refined the dataset to correct labels 

and ensure its accuracy. The updated dataset contains a 

reduced number of anomalies, as some segments were 

found to be non-anomalous upon further review. Table 

2 provides a comprehensive summary of the updated 

dataset. 

Fig. 4. Selected examples of non-anomalous segments of analyzed OPS-SAT telemetry channels. 
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To validate the performance of our anomaly 

detection algorithms, we prepared an additional test 

dataset. This dataset comprises telemetry fragments 

sourced from the same parameters as the training data 

but lacks periodicity. Table 3 provides an overview of 

this dataset, and Fig. 6 illustrates selected examples of 

labeled anomalous segments for reference. 

Table 2. The updated training and validation sets for 

anomalous and non-anomalous telemetry segments. 

 Training Validation Total 

Anomalies   328 117   445 

Nominal 1273 416 1689 

Total 1601 533 2134 

 

Fig. 5. Selected examples of anomalous segments of analyzed OPS-SAT telemetry channels. 
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Table 3. The test sets for anomalous and non-anomalous 

telemetry segments for OPS-SAT telemetries. 

 Test 

Anomalies   293 

Nominal 50 

Total 343 

 

2.2 Detecting anomalies in OPS-SAT telemetry using 

supervised machine learning 

For the purpose of anomaly detection in OPS-SAT 

telemetry signals, we employed a machine learning 

algorithm utilizing the random forest model 

architecture, as previously suggested in our prior 

Fig. 6. Selected examples of anomalous segments of analyzed OPS-SAT telemetry channels. 
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publication [13]. The random forest model was 

configured with the following settings: 

• Maximum number of estimators: 25 

• Quality criterion: Gini impurity 

• Minimum number of samples required to split 

an internal node: 2 

• Minimum number of samples required to be at a 

leaf node: 1 

All features were considered for the best split, and 

there was no restriction on the maximum number of leaf 

nodes. No maximum number of samples for 

bootstrapping was imposed. In line with previous 

research [4, 5], which showed the effectiveness of 

ensemble machine learning models in classifying 

signals based on extracted features, we adopted the 

same approach. Here, we leveraged random forests for 

binary classification, wherein signals were categorized 

as either nominal or anomalous. The feature extraction 

process encompassed a range of characteristics, 

including the identification of signal peaks, detection of 

missing signal segments, and assessment of noise levels 

with the telemetry signal. Importantly, these feature 

extractors were designed to maintain robustness across 

telemetry segments of varying lengths, therefore can be 

conveniently exploited for telemetry signals of different 

lengths and characteristics. 

We employed 18 distinct features for each segment, 

as suggested in [13]. These features span across basic 

segment statistics, including duration, length, mean, 

variance, and standard deviation. Additionally, we 

include the counts of peaks in the segment, both for the 

original segment and for slightly and strongly smoothed 

versions, peak counts for the first and second 

derivatives of the segment. Finally, we include the 

variance calculations for the first and second derivatives 

of the segment, the squared number of missing readouts, 

the weighted segment length relative to its sampling, the 

variance relative to the segment length and its duration. 

 

3. Experimental results  

 

In this section, we discuss the experimental results 

obtained over the validation set, without and with 

additional review of the dataset performed by the OPS-

SAT Operations team (for the latter case, we 

additionally augment the training dataset using our data 

augmentation procedure [13]). To quantitatively analyze 

the capabilities of the algorithm, we exploited classical 

detection measures, including precision, recall, and the 

F1 score. Table 4 gathers the experimental results 

obtained for the validation dataset, showing that the 

supervised machine learning model can effectively deal 

with an appropriately curated yet limited in size training 

set for real-world anomaly detection from telemetry 

data. 

 

Table 4. Preliminary results computed over the 

validation set (without additional review of telemetry 

segments performed by the OPS-SAT Operations team). 

 Precision Recall F1 score 

Anomalies 0.926 0.833 0.904 

Nominal 0.964 0.978 0.971 

 

In order to validate the accuracy of the labels 

generated by the machine learning team, we sought 

input from OPS-SAT operators. This validation process 

was conducted on a representative subset of segments. 

Given that the dataset primarily comprises non-

anomalous segments, which are often straightforward to 

identify, our focus in this survey was on examining edge 

cases. For this validation exercise, we converted each 

segment into a discrete small image format. This 

approach facilitated a visual inspection by operators, 

enabling them to comprehensively review each 

segment, scrutinize finer details, and verify the labeling. 

 

Table 5. The results computed using the validation set 

after the data augmentation and the dataset verification 

process. 

 Precision Recall F1 score 

Anomalies 0.929 0.897 0.913 

Nominal 0.971 0.981 0.976 

 

In the validation set, our model achieved an 

impressive accuracy of 0.957. When focusing 

specifically on anomaly classification, the precision and 

recall metrics for this task were 0.929 and 0.897, 

respectively. It's worth noting that the incorrectly 

classified segments in this set would also be challenging 

for human operators as well, given that they exhibit 

subtle characteristics that might suggest they are 

nominal. Conversely, the false positives in the 

classification include segments of the signal that could 

be interpreted as abnormal. Notably, the most difficult 

segments lie at the boundary between the anomalous 

and nominal parts of the telemetry channel. 

In contrast to the training and validation datasets, 

which were constructed using periodic segments from 

the studied telemetry channels, the segments in the test 

set were sourced from other, non-periodic telemetries. 

This dataset was designed to assess the classifier's 

robustness in handling such signals. Remarkably, the 

classifier achieved an accuracy of 0.959 on this test set, 

along with precision and recall metrics of 0.968 and 

0.959, respectively. These results indicate that the 

classifier can indeed cope with difficult telemetry 

signals, even when trained over relatively small training 

set with challenging characteristics. 
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4. Conclusions and outlook 

In this paper, we investigated our end-to-end 

anomaly detection algorithm that was deployed for 

detecting anomalous events in the OPS-SAT telemetry 

data. Applying such techniques in practice is extremely 

challenging, due to the fact that the ground truth data 

does not exist before the satellite is operating in orbit. 

Here, we showed that the thorough analysis of the 

telemetry channels plays a crucial role in designing and 

developing datasets that could be utilized to build and 

verify machine learning models for the anomaly 

detection task. Our experimental results indicated that – 

albeit the extreme difficulty of the OPS-SAT telemetry 

data – the classic machine learning models can 

generalize over the unseen data and offer high-quality 

anomaly detection. 

The outcomes of this project mark an exciting  

starting point for future research and development 

efforts in the field of telemetry data analysis. While we 

have made significant progress, several challenges 

remain, particularly at the telemetry data level. Some of 

these challenges include: 

Under-representation of Specific Events: 

Addressing the under-representation of specific events 

in the data is crucial. Ensuring a more balanced dataset 

with adequate representation of all possible anomalies 

can improve the model's ability to detect rare events. 

Extreme Imbalance in Training Datasets: Dealing 

with the extreme class imbalance often encountered in 

supervised learning scenarios is essential. Techniques 

like resampling, cost-sensitive learning, or synthetic 

data generation can be explored to mitigate this issue. 

Few-Shot Learning: Leveraging recent 

advancements in few-shot learning could be beneficial. 

This approach enables models to generalize effectively 

even when trained on limited samples, making it useful 

for scenarios where collecting extensive labeled data is 

challenging. 

FPGA Acceleration: Depending on the algorithm 

used, FPGA (Field-Programmable Gate Array) 

acceleration can significantly enhance on-board 

computational efficiency. FPGA hardware can be 

optimized to run specific machine learning algorithms, 

reducing computational load and power consumption. 

By addressing these challenges and capitalizing on 

recent advancements in machine learning and hardware 

acceleration, we can strive to build more robust and 

efficient models for telemetry data analysis, further 

advancing the capabilities of satellite operations and 

anomaly detection. 
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